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The flow of a river in a channel of slowly varying width is investigated using an asym-
ptotic approach. The work was motivated by a recent experimental investigation of
this problem. The river transports sediment as bedload and is susceptible to an
instability which causes variations in the depth of the river. The asymptotic theory is,
in the first instance, used to describe steady-state flows in channels of varying width
and it is found to give excellent agreement with experimental observations on this
flow. The theory shows conclusively that a river of slowly increasing width will form
central bars. Secondly, the approach is used to investigate the instability of the flow.
The major result obtained is that in a symmetric channel which diverges from a width
where the flow is unstable to one where instability is possible, then the preferred mode
of instability is likely to be a central bar rather than an alternating bar as is the case
in straight channels.

1. Introduction
Our concern is with the development of bar instabilities in channel flows of slowly

varying width. The work is motivated by the paper of Federici & Paola (2003, herein-
after referred to as FP). FP investigated the effect of channel divergence on bar forma-
tion. Various situations were investigated by the latter authors, but the one which
we focus on here corresponds to the flow of a sediment-carrying fluid in a linearly
divergent channel with rigid sidewalls. Related experiments were carried out by Bolla
Pittaluga, Repetto & Tubino (2003) who investigated the stability of river bifurcations
in gravel braided networks using a one-dimensional model. The latter paper is there-
fore relevant to the situation when the network is developed; here, our work is more
relevant to the processes leading to a braided network. In a sequence of experiments
FP found that divergence caused the generation of a central bar in the divergent part
of the channel. The experiments with rigid sidewalls were designed such that the flow
before the divergent reach was stable. Downstream of the divergent section of the
channel, the flow was unstable, so between the upstream stable section and the
unstable region downstream, the flow will be locally unstable to, in the first instance,
alternating bar modes. In all situations, it was observed experimentally that the
divergence of the channel caused central bars to develop in preference to the usual
case where alternating bars form. In order to understand why this occurs, we will use
a slowly varying approach to describe the basic steady-state configurations possible in
a divergent channel and then go on to consider the instability of these flows. We now
give a brief review of the most relevant previous investigations of bar instabilities.

The most significant original contributions to our understanding of migrating bar
instabilities in channel flows are due to Leopold & Wolman (1957), Kinoshita (1961),
Colombini, Seminara & Tubino (1987) and Seminara & Tubino (1990). The instability
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arises because of the natural tendency of particles dragged along in a turbulent stream
to form crests and troughs. The basic mechanism is responsible for a multitude of
patterns formed on river beds, e.g. alternating bars and central bars, and in the
nonlinear regime it is possibly responsible for braiding. The relationship between bar
instabilities and meanders is still in doubt, but various authors (e.g. Blondeaux &
Seminara 1985, hereinafter referred to as BS) have argued that there is a connection
between the phenomena. Bars are thought to be the fundamental morphodynamic
building blocks required to form meanders and braided beds and therefore have
important consequences for river ecology and river training.

Hall (2004) investigated bar instabilities in unsteady flows and pointed out that these
instabilities are convective in nature. Hall was therefore able to discuss the receptivity
problem for bars. Here, the terminology comes from boundary-layer transition studies
where receptivity has become known as the process by which temporal and spatial
irregularities in a flow trigger disturbances. Moreover, the theory is able to predict the
size of bar induced by particular obstacles. The convective nature of the bar instability
problem was subsequently discussed in detail by Federici & Seminara (2003). The
major property of a convectively unstable flow is that instability occurs because of
the spatial evolution of a constant-frequency wave as it moves downstream. Flows
which are absolutely unstable, on the other hand, behave differently with instability
spreading out in all directions from a localized disturbance to the flow. Thus, in a
sediment-carrying river, instability will arise when flow unsteadiness interacts with
spatial irregularities to produce downstream propagating waves and the instability
problem should therefore be discussed in terms of the spatial evolution of a constant-
frequency input; that is the approach used here.

The experiments of FP were motivated by a desire to understand the mechanism
which causes braiding in channels. Such systems have a variety of connected channels
of different width. Ashmore (1982, 1991) investigated experimentally the possible
mechanisms which cause braiding in an initially straight unconstrained cohesionless
channel. Ashmore found that the initial stage is the generation of alternate bars which
produce weak curvature variations of the channel. Subsequently, bank erosion causes
local width variations of the channels and this ultimately leads to the generation
of steady bars. Repetto, Tubino & Paola (2003) have looked at the instability of
the flow in a wavy channel and their results suggest that width changes can cause
the formation of steady central bars. The analysis was restricted to small-amplitude
waviness and some discussion of that problem can be found in Hall (2004). Here,
we are concerned with the experimental situation of FP where a channel diverges in
width by a factor of 3 and the sidewalls are constrained.

The first part of our theory will be used to describe steady-state flows in divergent
channels. We assume that the channel diverges slowly and use a multiple-scale ap-
proach to solve the flow equations asymptotically. The approach is similar to classical
lubrication theory and at any location along the channel the flow is one which could
occur in an infinitely long channel of the same width. However, it turns out that there
is a global connection between the flows at different local stations and a nonlinear
equation is derived to define this connection. The existence of this global connection
makes it impossible for the instability problem to be discussed without taking it into
account. The point we are making is that in a slowly-varying flow at any station,
it is reasonable to expect that the flow should look like that which would occur in
an infinitely long channel. However, there are an infinite number of such flows and
the global constraint fixes which one is selected at any location so a stability theory
applied to an arbitrary choice of solution would be meaningless.
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The procedure adopted in this paper is as follows. In § 2, we summarize the equa-
tions of motion and the basic states describing rivers of slowly varying width. The
structures we find are compared with experimental observations and used as the basis
for our stability analysis in § 3. In § 4, we discuss our results and relate them to the
experimental observations of FP.

2. Steady flows in channels of slowly varying width
Consider the flow in a channel of rectangular cross-section of width 2B∗

0 and of
typical depth D∗

0 . If x∗ and y∗ denote variables along and normal to the midpoint of
the channel, we define dimensionless variables x and y by

(x, y) = (x∗, y∗)/B∗
0 , (2.1)

and scale the corresponding velocity components on a typical speed U ∗
0 so that

(U, V ) = (U ∗, V ∗)/U ∗
0 . (2.2)

If H and D are the dimensionless water surface elevation and depth defined by

(H ∗, D∗) = D∗
0

(
F 2

0 H, D
)
, (2.3)

where the Froude number F0 is defined by

F 2
0 =

U ∗2
0

gD∗
0

, (2.4)

then the St Venant shallow-water equations take the form

U
∂U

∂x
+ V

∂U

∂y
= −∂H

∂x
− βτx

D
, (2.5a)

U
∂V

∂x
+ V

∂V

∂y
= −∂H

∂y
− βτy

D
, (2.5b)

∂

∂x
(UD) +

∂

∂y
(V D) = 0. (2.5c)

Here, β =B∗
0D

∗−1
0 is the aspect ratio of the channel whilst τx, τy are the bottom shear

stresses in the x and y directions and have been scaled on ρU ∗2
0 . The total dimensional

stress on the bottom is therefore given by τ ∗
0 = ρU ∗2

0

√
τ 2
x + τ 2

y . In the above equations,

turbulent effects have been averaged out and we have ignored dispersion effects asso-
ciated with flow curvature. A referee has pointed out to the author that for flows
with significant curvature, these effects might be important, but for sufficiently small
values of ε that will not be the case. The excellent agreement we find between our
predictions and the experiments of FP suggests that the assumption is valid for the
values of ε used in this paper.

The sediment flow rates Q∗
x and Q∗

y are now made dimensionless using {((ρs − ρ)/
ρ)gd∗

s }1/2 as an appropriate scale. Here, ρs and ρ are the sediment and fluid densities
and d∗

s is a typical sediment scale. Thus, we write

(Q∗
x, Q

∗
y) =

{
(ρs − ρ)

ρ
gd∗

s

}1/2

(Qx, Qy). (2.6)
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The appropriate time variable t associated with the motion of the sediment is defined
by

t∗ =
B∗

0

U ∗
0

t, (2.7)

and then the equation of continuity for the sediment becomes

∂

∂t

(
F 2

0 H − D
)

+ Q0

(
∂Qx

∂x
+

∂Qy

∂y

)
= 0, (2.8)

where

Q0 = d∗
s

{
(ρs − ρ)

ρ
gd∗

s

}1/2/
((1 − p)D∗

0U
∗
0 ), (2.9)

with p denoting the sediment porosity. It should be noted here that the time-
dependence of the system appears only explicitly in the sediment equation. Finally,
the system of equations is closed by equations to determine the wall stresses and
sediment flow rates. Following, for example, BS, we write

(τx, τy) = C(U, V )
√

U 2 + V 2, (2.10)

C =

[
1

6 + 2.5 ln(D/2.5ds)

]2

, ds =
d∗

s

D∗
0

, (2.11a, b)

(Qx, Qy) = (cos δ, sin δ)Φ, (2.12)

sin δ =
V√

U 2 + V 2
− r

βθ1/2

∂

∂y

(
F 2

0 H − D
)
. (2.13)

The expression for C given by (2.11a) is due to Engelund & Hansen (1967) and
is valid only for planar beds. Equation (2.13) is valid only if the sediment is trans-
ported mainly as bedload. (See BS for a full discussion of the assumptions and
approximations which must be made in order to derive the above equations.) The
bedload function Φ is defined by the Meyer–Peter–Muller formula:

Φ = 8(θ − 0.047)3/2. (2.14)

Here, θ is the Shield stress which is defined in terms of the total (dimensional) wall
shear stress τ ∗

0 by

θ =
τ ∗
0

(ρs − ρ)gd∗
s

= Θ0

√
τ 2
x + τ 2

y , (2.15)

Θ0 =
ρ(U ∗

0 )2

(ρs − ρ)gd∗
s

. (2.16)

The constant Θ0 defined by (2.16) is, apart from a factor C, the Shield stress for
the uniform flow (U, V ) = (1, 0).

We shall now determine the steady flow in a channel of slowly varying width.
Suppose then that the channel is defined by

G(εx) � y � F (εx), (2.17)

where ε is a small and positive parameter. For sufficiently small values of ε, the flow
at any local station will not know that the channel is divergent and therefore we
anticipate that the flow there will be predominantly in the x-direction. However, we
cannot say how fast the flow will be at a local station without considering the global
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problem. In order to do so, we use an expansion procedure which is essentially based
on a lubrication theory approach.

We define X = εx and seek a steady solution of the fluid and sediment equations
in terms of X and y. Since the flow is slowly varying in the X-direction, we expect U

to be only a function of X at leading order. The velocity components are therefore
expanded as

U = U = U0(X) + εU1(x, y) + · · · , (2.18a)

V

ε
= V = V0(X, y) + εV1(X, y) + · · · , (2.18b)

where the O(ε) difference in velocity scales is implied by the equation of continuity
written in terms of X and y.

The height H then expands as

H = H =
1

ε
H0(X) + H1(X) + εH2(X, y) + · · · , (2.19)

and the depth D as

D = D = D0(X) + εD1(X, y) + · · · . (2.20)

For small enough values of ε, we expect that at leading order the basic state will
be locally identical to that in a uniform channel. Thus, we have anticipated that
U0, H0 and D0 depend only on X. Note that, locally, H0 will be found to vary like X

so in terms of the original streamwise coordinate H ∼ x which is the constant-width
solution.

The leading-order approximations to the momentum, continuity and sediment
equations yield

∂H0

∂X
= −βC0(X)U 2

0 (X)

D0(X)
, (2.21a)

∂

∂y
(H0(X)) = 0, (2.21b)

∂

∂X
(U0D0) +

∂

∂y
(V0D0) = 0, (2.21c)

∂Φ0

∂X
+

∂

∂y

{
Φ0

(
V0

U0

− J0

)[
F 2

0 H2 − D1

]
y

}
= 0. (2.21d)

Here, C0(X) = C0(D = D0) and J0 = r/(βθ
1/2
0 C

1/2
0 U0). The above equations must be

solved subject to:

V0 − F ′(X)U0 = 0, y = F, (2.22a)

V0 − G′(X)U0 = 0, y = G, (2.22b)

so that the normal velocity vanishes at the boundaries. The condition that there is no
flow of sediment normal to the boundary gives

∂

∂y

[
F 2

0 H2 − D1

]
= 0, y = F, G. (2.22c, d)

If we integrate (2.21d) from y = G to y = F and use (2.22), we obtain

∂

∂X
(Φ0[F − G]) = 0 (2.23)
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so that

Φ0(F − G) = 2Φ0, (2.24)

where Φ0 is the bedload function for a uniform flow U0 = D0 = 1.

Similarly, if we integrate the equation of continuity from y =G to y = F and use
(2.22) we deduce that

U0D0(F − G) = constant, (2.25)

and we can take the constant to be 2 so that (2.25) reduces to the uniform flow
solution U0 =D0 = 1 when F =1, G = −1. Since F and G are given functions of X it
follows that (2.25) relates U0 and D0. However, we still do not have enough informa-
tion to find these quantities independently.

We further note that the sediment flow equation integrated from G to y yields(
y − G

F − G

)
(Φ0[F − G])X = Φ0J0

∂

∂y

[
F 2

0 H2 − D1

]
, (2.26)

so that, using (2.24), (∂/∂y)[F 2
0 H2 − D1] is found to be identically zero in G < y < F .

Hence,

F 2
0

∂H2

∂y
=

∂D1

∂y
. (2.27)

Equations (2.24) and (2.25) then determine U0(X) or D0(X) implicitly for a given
channel geometry. We see that the solution depends only on the width of the channel
F − G rather than on F and G independently. Note, however, that the restriction that
ε � 1 means that there is no possibility of flow separation since U0 must remain
positive above. This solution procedure can be extended to arbitrary order, but the
details become somewhat tedious. For brevity, here we simply state the results which
emerge from the next order approximation to the momentum, continuity and sediment
flow equation when solved subject to the appropriate boundary conditions. First, we
find that H1 is a function of X only and in fact

dH1

dX
= U0 U0X. (2.28)

The function D1 is given by

D1 =
F 2

0 βC0U0

D0

[∫ y

G

V0 dy −
∫ F

G
dỹ
∫ ỹ

G
V0

F − G
dy

]
, (2.29a)

which incidently means that ∫ F

G

D1 dy = 0 =

∫ F

G

U1 dy, (2.29b)

so that there is no O(ε) change to the mean value of D. The streamwise and normal
velocity components then follow from

U1 = −
{

C ′
0U0 − U0C0D

−1
0

2C0

}
D1 = A(X)D1, (2.30a)

D0V1 = −
∫ y

G

{U1D0 + U0D1}X − [V0D1]
y
G. (2.30b)

Finally, the transverse variation of the order ε2 sediment depth is found to be given
by
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Figure 1. The dependence of U0, D0, Φ0 on X for ds = 0.05, C0Θ0 = 0.15.

∫ y

G

∂

∂X

{
Φ ′

0Θ0

[
C ′

0U
2
0 D1 + 2C0U0U1

]}
dy −

[
V0

U0

Φ ′
0Θ0

(
C ′

0U
2
0 D1 + 2C0U0U1

)]y

G

+

{
Φ0

[
V1

U0

− V0U1

U 2
0

]}y

G

= J0

∂

∂y

{
F 2

0 H3 − D2

}
. (2.31)

The vanishing of the integrals of the depth and streamwise velocity corrections at
order ε means that, correct to order ε, their effects on the mean values of these flow
quantities also vanish so that when we compare with experiments, then correct to
O(ε), we can ignore these corrections.

Equation (2.31) fixes the shape of the bedform induced by the change in channel
width. Note that H0 and D0 are functions of X only whilst (∂/∂y){F 2

0 H2 − D1} =0, so
that the first spanwise variation of the sediment depth occurs at O(ε2) and is therefore
fixed by (∂/∂y){F 2

0 H3 − D2}. Before we present some solutions of these equations, we
note that we restrict our attention to situations with θ > 0.047 so that there is always
transport of sediment taking place. If this is not the case, F 2

0 H − D is constant and
the X momentum equation is integrated to find H in terms of D and U . The resulting
equation is then solved subject to (2.25).

We first consider the flow in a divergent channel with linearly increasing width
defined by

y = ±1, X < 0,

y = ±(1 + X), X > 0.

}
(2.32)

This channel is of particular interest because FP have performed experiments in such
a channel. In the experiments, which will be discussed in more detail later, the walls of
the channel were inclined at angles α up to about 15◦ to the mid-plane of the channel.
Thus, ε corresponds to tan α and is therefore numerically small in the experiments so
we might expect that our theory is applicable to them.

Figure 1 shows U0(X), D0(X) and Φ0(X) calculated for the case Θ0C0 = 0.15,
ds = 0.05 which is typical of the values used in the experiments. We observe that all
these quantities decrease as X increases. Figure 2 shows the variation of β� = (F (X) −
G(X))/2D0(X), Ω� =((F (X) − G(X)))/2U0(X), with X whilst figure 3 shows β� as a
function of Ω�. We shall see later that β�, a local aspect ratio per unit initial β,

and Ω�, a local frequency parameter, for a time periodic initial disturbance of unit
frequency at X =0 play crucial roles in the stability problem. In fact, the dependence
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Figure 2. The dependence of β�, Ω� on X for ds =0.05, C0Θ0 = 0.15.
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Figure 3. The dependence of β� on Ω� for ds = 0.05, C0Θ0 = 0.15.

of β� on Ω� determines the path in the β-frequency plane of a constant-frequency
wave as it moves downstream. This path is the crucial input to the stability problem
for a wave propagating in a channel of slowly varying width.

FP carried out measurements in channels defined by (2.32) for X � 2. The width
of the channel therefore increases by a factor of 3 in the divergent section. The
values of the parameters used in those experiments are given in table 3 of that paper.
Note that only the first eight experiments of FP are relevant to the present situation,
since they alone correspond to rigid banks. In order to compare our predictions,
we note that in those experiments, the channel width increased by a factor of 3
before becoming straight again. FP found the ratios of the local β terms at the exit
and entrance to be 30/6, 27/4.5, 19/3, 60/10, 30/5, 43/7, 21/3 and 13/2. This ratio
corresponds to β�(2) in our notation. This ratio is approximately 6.4, which agrees
well with the experimental results. Note here that if we are working correct up to
O(ε), we can ignore the O(ε) corrections to U1 and D1 since they were shown earlier
to have zero mean. Note, however, that the experimental runs used sand with a
typical scale of 0.01 m and different upstream fluid depths, so strictly speaking it is
not valid to compare the experiments with figure 2 which we calculated with ds = 0.05.

However, the dependence of the results on this quantity is weak and figure 4 shows
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Figure 4. Comparison of theory with FP experimental results.
�, β; +, Froude number; ∗, wall stress.

the correct comparison between theory and experiment. Case 1 of FP corresponds
to ε = tan(α) with α = 10◦ and the other results correspond to α =15◦ which
suggests that our slowly varying approach should be relevant and indeed, figure 4
shows a remarkably good agreement between theory and experiment. For most of
the comparisons, we see that the error is less than 10% and only in a few cases it
is about 20%. It is crucial to note here that our theory is based on the assumption
that locally the flow is essentially in the X-direction. However, the strength of the
flow and the local fluid depth and free-surface elevation also come out of a global
calculation. This is crucial because without this knowledge a quasi-parallel stability
theory cannot be carried out. The experiments of FP showed that in the divergent
part of a channel flow with symmetric sidewalls of constant slope, a central bar
was formed. Our calculation above showed that at leading order, the basic state is
identical to that in an infinitely long channel with width equal to the local width of
the channel, so there is no possibility of a bar structure. Now let us consider the flow
pattern and sediment depth associated with the higher-order effect calculated above.
The local sediment depth is given by

Sd = B∗
0

(
F 2

0

[
1

ε
H0(X) + H1(X) + εH2(X, y) + · · ·

]
− D0(X) − ε2D1(X, y) − · · ·

)
.

Hence, the spanwise slope of the sediment is given by Sdl where Sdl =
(F 2

0 [ε2H3(X, y) + · · ·] − ε2D2(X, y))y. Note here that though H2 and D1 depend on
y, the combination F 2

0 H2(X, y) − D1(X, y) is independent of y, so that spanwise
variations of sediment occur first at O(ε2). We also stress that if we wish to plot the
sediment depth correct to O(ε2) rather than its spanwise derivative, then the expansion
procedure given above has to be continued to two further orders of magnitude in ε;
in principle, that causes no difficulty, but the calculation becomes inordinately tedious
and, as pointed out by other authors, the validity of the model we are using for
sediment transport does not warrant a calculation to such order. Moreover, the
spanwise slope of sediment depth fixes the shape of any forced bar, so we are able to
make a comparison with FP without continuing the expansion procedure to higher
order. Figure 5 plots contours of constant spanwise slope of sediment in the divergent
reaches of the experiments 1–8 of FP. In all cases, the slope is negative in the top half
of the channel and positive elsewhere. The slope vanishes along the centreline and
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Figure 5. (a–h) Contours of constant spanwise slope of sediment in FP experiments 1–8.

channel walls. When y increases from zero along the centreline, the slope decreases
until it reaches a negative minimum and then increases until it reaches zero. Thus,
our results accurately predict the central bar structure found in the experiments.
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Figure 6. The dependence of (a) U0, D0, Φ0 and (b) β�, Ω� on X for ds = 0.05, C0Θ0 = 0.15
for the dilated channel.
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Figure 7. The dependence of U0,D0, Φ0 on X for ds =0.05, C0Θ0 = 0.15
for the constricted channel.

Now consider the channel with walls defined by

y = ±(1 + A exp(−4(X − 1)2)), −∞ < X,

where A is a constant and positive/negative values of A represent dilated/constricted
channels.

In the first instance, let us consider the dilated case and take A= 0.5 so that the
maximum width is 3/2 times the minimum one. Figure 6(a) shows the dependence
of U0, D0 and Φ0 on X. The channel is symmetric about X =1 and this symmetry is
maintained by the flow properties plotted. Figure 6(b) shows the dependences of β�

and Ω� on X. We see that the local value of the aspect ratio increases by about a factor
of 2 as the channel increases in width by a factor 1.5. The corresponding increase
in Ω� is somewhat less in magnitude. Figures 7 and 8 show the corresponding results
for the constricted channel. Here, the local aspect ratio falls by a factor of 3 when
the channel width decreases by a factor of 2. In both cases, we observe that β�/Ω�

is nearly constant, as was found to be the case for the divergent channel.
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Figure 8. The dependence of β�, Ω� on X for ds =0.05, C0Θ0 = 0.15
for the constricted channel.

3. The non-parallel instability of channel flows
We have seen that flow divergence leads to a steady basic state which has a central

bar in the divergent part of the channel. In the divergent part of the channel, the local
width ratio increases beyond the value at which bar instabilities might be expected
to form and we now address the instability problem. Note, however, that in channels
where the background level of disturbance is large the weak central bar associated
with flow divergence may not be formed because much larger amplitude structures
associated with an instability can grow and swamp the forced steady central bar.

Let us consider the instability of the basic state (U, V, H, D) = (U, εV , H/ε, D)
discussed in the previous section. Suppose that the corresponding values of Φ, θ, τx,

τy, τs are denoted by Φ, θ, τ x, τ y and τ s , respectively. The appropriate expansions of
these functions are

Φ = Φ0(X) + O(ε), θ = θ0(X) + O(ε), τ x = τ x0(X) + O(ε),

τ y = τ y0(X) + O(ε), τ s = τ s0(X) + O(ε).

}
(3.1)

We assume at this stage that the disturbances to be imposed on the flow are small
compared to any power of ε. (In other words the background disturbance field is
arbitrarily small.) The instability operates on a spatial length scale comparable with
the channel width, so we use a WKB formulation which allows for a wave of slowly
varying wavenumber of wavelength O(B∗

0 ) to propagate in the flow direction. We first
perturb the basic state of § 2 by writing

U = U + Ũ (X, y; ε),
V

ε
= V +

Ṽ

ε
(X, y; ε), θ = θ + θ̃ (X, y; ε),

τx = τ x + τ̃x(X, y; ε),
τy

ε
= τ y +

τ̃y

ε
(X, y; ε), Φ = Φ + Φ̃(X, y; ε),

H =H + H̃ , D = D + εD̃.


. (3.2)

Here, we assume Ũ , Ṽ etc. are small so that the linearized form of (2.5) becomes

εU
∂Ũ

∂X
+ εŨ

∂U

∂X
+ εV

∂Ũ

∂y
+ Ṽ

∂U

∂y
= −ε

∂H̃

∂X
− β

(
τ̃x

D
− τ xD̃

D
2

)
, (3.3a)
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ε2Ũ
∂V

∂X
+ εU

∂Ṽ

∂X
+ εV

∂Ṽ

∂y
+ εṼ

∂V

∂y
= −∂H̃

∂y
− β

(
τ̃y

D
− τ yD̃

D
2

)
, (3.3b)

ε

[
U

∂D̃

∂X
+ Ũ

∂D

∂X
+ D̃

∂U

∂X
+ D

∂Ũ

∂X

]
+ Ṽ

∂D

∂y
+ D

∂Ṽ

∂y
+ εV

∂D̃

∂y
+ εD̃

∂V

∂y
= 0. (3.3c)

Finally, the perturbed form of the sediment continuity equation becomes

∂

∂t

(
F 2

0 H̃ − D̃
)

+ Q0

(
ε
∂Q̃x

∂X
+

∂Q̃y

∂y

)
=0. (3.4)

Here, Q̃x and Q̃y are the perturbations in Qx and Qy , respectively.
It is instructive at this stage to review the existing linear stability theory for

alternating bars. In fact, we will point out some key features of the latter problem
which have apparently been overlooked. It turns out that these features play a crucial
role in the non-parallel problem. If the walls of the channel are straight, (2.5) supports
a steady unidirectional flow solution U =1, V = 0 with D = 1. If this equilibrium state
is perturbed to a travelling-wave disturbance of wavenumber α and frequency Ω we
find that, following BS, the eigen relation may be written in the form

− iΩ

Q0

= −Φ0

r

β
M2 +

(A1α
3 + iA2α

2 + A3α + iA4)α

B0 + iB1α + B2α2 + iB3α3
. (3.5)

The constants A1, A2, etc. appearing above may be written in the form

A1 = f1 − f2, A2 = −A1χ0, A3 = (f2 − Φ0)M
2, (3.6a–c)

A4 = −A1M
2χ0s1 − M2(Φ0 − f1)(s2 − s1 − 1)χ0, (3.6d)

B3 = F 2
0 −1, B2 = −

[
χ0 +F 2

0 χ0(s2 −s1 −2)
]
, B1 = −M2 +F 2

0 χ2
0 (s2 −s1 −1), (3.6e–g)

B0 = −M2χ0s1, M =
mπ

2
, χ0 = βC, (3.6h–j )

where f1, f2 etc. are as defined in BS.
Previous investigators have used (3.5) to determine the complex frequency associated

with a disturbance of (real) wavelength 2π/α. The neutral case is fixed by solving
(3.5) with both α and Ω real for given values m =1, 2, 3, 4, . . . of the mode number.
Note that odd/even values of m correspond to disturbance fields with the spanwise
velocity even/odd about the centre, respectively. In particular, m =1, 2 correspond
to alternating and central bars, respectively. The most dangerous mode corresponds
to the case m =1 and, for all physically relevant values of the parameters of the
problem, the neutral curves have been found to be of shapes shown in figure 9 with
a critical wavenumber 	 0.5 and a critical aspect ratio 	 10. The neutral curves
shown in figure 9 have been calculated with F0 =

√
1/2, Φ0 = 0.3, r =0.3, Θ0 = 0.3,

and ds = 0.01. The curves are changed little if F0, Φ0 and θ are varied.
The frequency Ω is found to be positive (corresponding to downstream propagating

waves) everywhere except at very small wavenumbers (typically α < 0.1). BS have
argued that the stationary wave corresponding to the zero frequency mode might
play a crucial role in the formation of bends.

In fact, it is now known from Hall (2004) that (3.5) is the eigenrelation corres-
ponding to a convective instability so should therefore be solved for a complex value
of α with the frequency real. Disturbances then grow or decay as they propagate
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Figure 9. The neutral curves in (a) the (α, β)-plane and (b) the (Ω,β)-plane Θ0 = 0.3,
ds = 0.01, Φ0 = 0.3.

downstream of the position where they are stimulated in exactly the same way that
Tollmien–Schlichting waves develop downstream of a vibrating ribbon in a growing
boundary layer (see Gaster 1974). Of course, the neutral configuration is independent
of whether we use spatial or temporal instability theory since α and Ω are then both
real.

It appears that the nature of (3.5) at large values of the aspect ratio β has not
been discussed. It might appear at first sight that the large-aspect-ratio limit is of no
physical interest because the flow will be highly nonlinear by that stage. However,
the structure found in this limit is crucial to our understanding of how a constant-
frequency wave changes as it moves downstream. In fact, it is straightforward to find
the large β forms of the neutral curve directly from (3.5). First, we note that on the
left-hand branch of the neutral curve, the wavenumber and frequency both approach
zero like β−1 and the appropriate asymptotic structure is

α =
α̂

β
+ · · · , Ω =

Ω̂

β
+ · · · ,

with

α̂2 = Φ0

rM2B̂0

B̂11Â4

, Ω̂ = − Â4α̂Q0

B0

,

where

B0 = βB̂0, B1 = β2B̂11 + B̂12, A4 = βÂ4 + A41.

The right-hand branch of the neutral curve has the asymptotic behaviour

Ω =
Ω̂

β2
+ · · · , α = α̂ + · · · ,
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Figure 10. The first three neutral modes for the case of figure 9.

with

α̂2 = − B̂11Φ0rM
2 − Â4

Â2

− Ω̂

Q0

=
Â2α̂

2 + Â4

B̂11

[
−
(

Â1α̂
3 + Â3α̂

Â2α2 + Â4

)
+

(
B̂0 + B̂2α̂

2

B̂11

)]
,

where A2 = βÂ2, B2 = βB̂2.

It is easy to show that for physically realistic values of the flow parameters the
wavenumber α̂ is to the left of the point on the neutral curve where dα/dβ = 0.

In addition, it should be noted that the frequency Ω tends to zero on the right-
hand branch of the neutral curves. Figure 10 shows the first 3 neutral modes of the
eigenvalue problem. We see that the minimum values of β on each curve increases
with the mode number and that as the frequency increases each mode becomes stable
at all values of β.

In fact, figure 10 contains enough information for us to draw some highly
significant conclusions about the non-parallel stability problem. Since the alternating
bar instability is a convective one, it is appropriate to consider the spatial evolution
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of a wave of constant frequency Ω. At the local position X, the local frequency based
on the channel width there is defined by

ΩL = Ω(F (X) − G(X))/U (X) = ΩΩ�

and βL the local value of the aspect ratio is defined by

βL = β
(f (X) − G(X))

2D(X)
= ββ�. (3.7)

Since the eigenrelation is only weakly dependent on Θ0, Φ0, F0 (note that the
eigenrelation will depend on the local values of these quantities as a wave moves
downstream), it follows that the downstream path of a constant-frequency wave is
approximately traced out by Ω� as a function of β� in the (Ω, β) plane. We saw
earlier that in a linearly diverging channel this path moves away from the origin with
β� increasing slightly faster than Ω�. This is also the case for the expanding parts
of the constricted and dilated channel cases discussed earlier. Calculations with other
geometries show that this result is typical with β� increasing slightly faster than Ω�

as X increases through an expanding region. Thus, any wave will begin as a stable
wave near the origin if β is sufficiently small and then pass into the unstable region
of mode m(m = 1, 2, 3 . . .) before stabilizing to this mode. The flow is then unstable
to the m =1 mode before it stabilizes, and so on. Of course, the most important case
is m =1 and we see that in a channel which diverges, the first mode remains unstable
for only a finite distance before the M = 2 mode takes over. Of course, this discussion
ignores nonlinear effects, but nonlinearity will only alter the position where the m = 2
mode takes over.

The above approximate description of the non-parallel stability problem will now
be set within the context of a formal expansion procedure capable of being extended,
in principle, to any order in the small parameter ε characterizing the rate of change
of channel width.

In order to take non-parallel effects into account in a self-consistent manner, we

seek a WKB solution for Ũ of the form

Ũ =

{
exp

(
−iΩt +

i

ε

∫ X

α(s) ds

)
{U0(X, y) + εU1(X, y) + . . .} +complex conjugate,

(3.8)

together with similar expansions for Ṽ , D̃, etc.
The frequency Ω in (3.8) is constant and the complex wavenumber α will vary with

X as the wave moves downstream. Note also that F0, β, θ0 and Φ0 are held fixed in
the stability analysis, but that the eigenvalue problem will reflect the ‘local’ nature
of these variables through the variation of the basic state variables with X. If the
flow is parallel, (3.8) will reduce to the usual situation with α constant. Otherwise, α

will vary and local growth rates and wavenumbers must be defined in terms of the
disturbance field.

3.1. Boundary conditions

If the normal velocity is to vanish at the banks then, correct up to O(ε), we require
that

Ṽ − εF ′(X)Ũ = 0, y = F, (3.9a)

Ṽ − εG′(X)Ũ = 0, y = G, (3.9b)
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whilst the condition that there should be no flow of sediment normal to the banks
gives, correct to O(ε),

∂

∂y

(
F 2

0 H̃ − D̃
)

= 0, y = F, G. (3.10)

The expansions for Ũ , Ṽ , D̃ and H̃ are substituted into (3.3) and (3.4) and like
powers of ε equated. At zeroth order, we find that

iαU 0U0 + iαH0 +
β

D0

C0{s1U0 + s2D0} − βC0U
2

0

D
2

0

D0 = 0, (3.11a)

iαU 0V0 +
∂H0

∂y
+

β

D0

V0C0U 0 = 0, (3.11b)

iα(U 0D0 + D0U0) + D0V0y = 0, (3.11c)

− iΩ

Q0

(
F 2

0 H0 − D0

)
+ iαΦ0(f1U0 + f2D0) + Φ0

(
V0y

U 0

− R
∂2

∂y2

(
F 2

0 H0 − D0

))
= 0, (3.11d)

Here, the constants s1, s2, f1 and f2 are defined by

s1 = 2U 0, s2 = U
2

0

∂C0

∂D0

C0

, f1 =
2Θ0

Φ0

U 0C0Φ
′
0, f2 =

U
2

0Θ0

Φ0

∂C0

∂D0

Φ
′
0. (3.12(a–d))

The boundary conditions allow (3.11) to have a solution of the form

(U0, V0, H0, D0) = ĥ0(X)(û0S, v̂0C, S, d̂0S), (3.13)

where û0, v̂0, etc. are functions only of X and

S = sin
mπŷ

2
, C = cos

mπŷ

2
, m = 1, 3, . . . , ŷ =

y − (F + G)/2

(F − G)/2
.

We have anticipated above that the most dangerous mode has V0 an even function of
ŷ which measures distance from the midpoint of the walls. For convenience we now
define

M =
mπ

(F − G)
.

The equations (3.11) and (3.13) can then be used to write down the leading-order
eigenrelation in the form

−iΩ = − Φ0Q0

F 2
0 − d̂0

{
− v̂0M

U 0

+ RM2
(
F 2

0 − d̂0

)
+ iα(f1û0 + f2d̂0)

}
, (3.14)

with

v̂0 = − M

iαU 0 +βC0U 0/D0

, û0 =
−M(s2β − βC0U 0/D0)v̂0 + λ2U 0

iα
{

−s2βC0 + βC0U 0/D0 + iαU
2

0 − s1C0βU 0/D0

} ,

(3.15a)

d̂0 = − D0

iλU 0

{iλÛ 0 − Mv̂0}. (3.15b)

This equation is of course equivalent to (3.5) if U 0 = D0 = 1 and it is therefore possible
to rescale (3.14) with all quantities now defined in terms of their local values. Since we
are investigating the spatial instability problem, (3.14) must be solved at each value of
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X in the range of interest for the complex wavenumber α(X). Since the zeroth-order
problem contains no slow X derivatives on the disturbance field, the solution of this
problem is unique only up to an arbitrary multiplicative factor ĥ0(X) which must
therefore be determined at higher order.

At order ε, we find that U1, V1, H1 and D1 satisfy

iαU 0U1+iαH1 +
β

D0

C0(s1U1+s2D1)− βC0U
2

0

D
2

0

D1 =

(
J5ĥ0 +J6

dĥ0

dX

)
S+T.O.S., (3.16a)

iαU 0V1 +
∂H1

∂y
+

β

D0

V1C0U 0 =

(
J7ĥ0 + J8

dĥ0

dX

)
C +T.O.C., (3.16b)

iα(U 0D1 + D0U1) + D0V1y =

(
J3

dĥ0

dX
+ J4ĥ0

)
S +T.O.S., (3.16c)

− iΩ

Q0

(
F 2

0 H1 − D1

)
+ iαΦ0(f1U1 + f2D1) + Φ0

(
V1y

U 0

− R
∂2

∂y2

[
F 2

0 H1 − D1

])
=

(
J1ĥ0 + J2

dĥ0

dX

)
S +T.O.C. (3.16d)

Here, T.O.S. and T.O.C. denote terms which are orthogonal to S and C, respectively,
in G � y � F . These terms do not contribute to the solvability equation required to

determine ĥ0 so we will not give these terms explicitly. The quantities J1 − J8 are
given in the Appendix. The solvability condition is most easily derived by defining

η =


V1

H1

S1

∂S1/∂y

 , D1 = F 2
0 H1 − S1

so that (3.16) may be expressed as

dη

dy
=


0 e5 e4 0

e8 0 0 0

0 0 0 1

0 e7 e6 0

 η +


R1

R2

0

R3

 , (3.17)

Here, e4 − e8 and R1, R2, R3 are defined in the Appendix.
This equation must be solved subject to

η1 = F ′û0ĥ0, y = F, η1 = G′û0ĥ0, y = G,

η4 = 0, y = F, G.

}
(3.18)

The adjoint of the homogeneous form of (3.17)–(3.18) has eigenvector

x̂1(X)[S, x̂2(X)C, x̂3(X)C, x̂4(X)S]T , (3.19)

where

x̂2 = −M/e8, x̂4 = (Mx̂2 − e5)/e7, x̂3 = −Mx̂4.

Following the usual procedure, we obtain the solvability condition in the form

(F ′ − G′)û0ĥ0 = 1
2
(F − G)(R1 + x̂2R2 + x̂4R3),
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which can be reduced to

dĥ0

dX
− µ(X)̂h0 = 0,

where µ(x) is defined in the Appendix. Note here that the terms denoted by T.O.C.
and T.O.S. in (3.16) make no contribution to the solvability problem.

3.2. The growth rate

We define the growth rate σ (X) in terms of the perturbation by writing

σ =
ε(d/dX){N (X)}

N
,

where N is some averaged flow property. If, for example, we define the growth rate
in terms of the average over y and t of the square of the (real) perturbation to the
free surface height we have

N =

∫
2π/Ω

∫ F

G

H̃ 2 dy dt

F − G
,

then, after some manipulation, we find that σH , the growth rate based on the height
of the free surface, is given by

1
2
σH = −αi + εµr (X) + O(ε2). (3.20)

Similarly, the growth rate evaluated at the banks in terms of the water depth is given
by

σD = −αi + εµr (X) + ε

(
d�/dX

2�

)
+ O(ε2), � =| d̂0 |2, (3.21)

and corresponding growth rates can be written down for the other flow quantities. We
observe above that the growth rates associated with different flow quantities differ at
O(ε) so that the neutral curves plotted correct to order ε will also depend on the flow

quantity used to define it. Since the sediment depth, F 2
0 H̃ − D̃, is the most obvious

record of a bar structure, we will use it to define the neutral configuration. Note also
that if the background disturbance level in the channel is larger than ε then only the
leading-order term in (3.21) is meaningful and the neutral curve is determined by the
leading-order theory without a non-parallel effect.

We define a neutral point to be the position where the imaginary part of the growth

rate is zero. In order to calculate the neutral points α(X), µ and d̂0, etc. must be
calculated numerically for a given basic state. If the imaginary part of α vanishes at
X = Xn0, then we see from (3.20) that, correct to O(ε), the neutral point based on
say the height of the free surface is given by

X = Xn = Xn0 + εXn1 + · · · , Xn1 =

(
µr (Xn0)X=Xn0

)
α′

i(Xn0)
, (3.22)

and the local value of β and Ω can then be defined in terms of basic flow quantities
defined at Xn. Note, however, that we must retain higher-order terms in the expansion
of αi at a point where α′

i = 0. Similar neutral points can be defined for the other flow
properties. Before presenting our results, we note that the above discussion applies to a
single mode for m = 1, 3, 5, . . . . (These modes have the spanwise velocity component
even about the mid-point of the channel.) In fact, the analysis given applies equally
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well to odd modes with

U0H0D0 ∼ cos

(
mπŷ

(F − G)/2

)
.

It can be shown that the analysis given above for the odd-mode growth rates
applies to the even case if we change m to −m with m = 2, 4, 6, 8. . . . Finally, before
we present our results, we make some remarks about the solution of the O(ε) system
above. So far, we have only discussed the amplitude equation which results from
the application of the solvability condition at this order. This amplitude equation
determines the amplitude of the zeroth-order eigenfunction. In fact, we only showed
explicitly the O(ε) forcing terms which contribute to the solvability condition. In
addition, there are forcing terms at this order which force all the other odd and even
modes. However, the corresponding differential systems do not require a solvability
condition since they are all slaved to the wavenumber of the zeroth-order mode.
Nevertheless this means that when the zeroth-order mode passes through a region
of exponential growth, all other even and odd modes will grow exponentially at the
same rate with relative amplitude O(ε) smaller. This means that when the wave enters
a regime where one or more of the other modes are unstable, it will not have to
amplify from the background level associated with naturally occurring disturbances.

4. Results and further discussion
In the first instance, we present results using only the leading-order approximation

to the stability problem. This situation is most relevant to values ε smaller than
typical magnitudes of background disturbance. At leading order, the growth rate is a
function only of the width of the channel F (X) − G(X) and it makes no difference
whether or not the channel is symmetric. First, let us consider the channel

y = ±1, X < 0, y = ±(1 + X), 0 < X < 2,

used by FP in the Genoa experiments. Note that FP used a channel with walls
diverging at a maximum inclination of 15◦ to the initial direction of the walls so an
analysis is valid if tan 15◦ is sufficiently small for a small ε theory to be valid. However,
it should be observed that the leading-order theory does not depend explicitly on ε

so we do not have to give a numerical value for it at this stage. The neutral curves
are then calculated by finding the downstream position where the growth rate of
a particular mode vanishes and then the local value of the aspect ratio, frequency
and wavenumber can be calculated in terms of the local flow properties. The local
frequency and aspect ratio are given by

βl = ββ�, Ωl = ΩΩ�,

where Ω� and β� are as defined in § 3. Figure 11 shows the first three ‘local’ neutral
curves in the aspect ratio–frequency and distance–frequency planes for a typical case.
In particular, we consider the situation when

F0 =
√

1
2
, Q0 = 0.3, ds = 0.01, Θ0C0 = 0.3, β = 5.

The curves labelled ‘1–2 swap’ and ‘2–3 swap’ denote the positions where the first
mode and second mode become less unstable than the second and third modes,
respectively. In figure 11(b), we have also indicated the downstream paths taken by
constant-frequency disturbances as they propagate in the flow direction. We see that
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Figure 11. Neutral curves for Φ0 = C0Θ0 = 0.3, β = 0.5, r = 0.5.

any path which passes into a region where the first mode grows quickly moves into
a regime where the second mode is more unstable. This is, we believe, the reason
why FP found that central bars were the preferred mode of instability in the set
of experiments 1–8. Here, we are making an assumption implicitly made in the
description of convectively unstable flows. Thus, we assume that upstream of the
unstable region there is a dominant frequency in the flow which selects a particular
combination of modes with that frequency. The part of the disturbance associated
with the first mode will grow when it crosses the lowest curve in figure 11(b). However,
if the disturbance does not grow sufficiently quickly for nonlinear effects to take over
then the mode is then overtaken in size by the second mode as the disturbance passes
into the region above the curve labelled ‘1–2 swap’. (Note that since the second mode
is driven at O(ε) by the first mode, it will be swamped by the first mode within a
distance of O(ε) of the 1–2 swap line). In the FP experiment, X varies in (0, 2), so
the disturbances never reach a position where the third mode takes over. Of course,
in cases where the first mode grows appreciably, then a finite-amplitude alternate bar
could be set up before the central bar mode amplifies sufficiently to dominate the flow.
This is only possible for very small dominant upstream frequencies which correspond
to disturbance paths in figure 11(b) which at small values of the local frequency are
almost vertical. Figure 11 suggests that in an experiment where X varies in (0, 3), the
third mode will come into play.
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Figure 12 shows the effect of the upstream Shield stress on the neutral positions for
the first three modes. We see here that a significant effect of decreasing the upstream
Shield stress is to reduce greatly the band of frequencies which are amplified. If the
frequencies present in the incoming flow are comparable in the two situations, this
suggests that the first mode will become more inaccessible as the upstream Shield
stress falls.

Figure 13 presents the same results as shown in figure 11 at a higher value of
the upstream aspect ratio. We see that the upstream aspect ratio has little effect on
the neutral configuration plotted in terms of βl and Ωl . Note, however, that if the
upstream value of the aspect ratio is decreased sufficiently, then only part of the
unstable region will be reached as a wave moves downstream. However, the results
of figure 10 suggest that at even higher values of X, the third mode (and indeed even
higher modes) will come into play.

Figure 14 shows the effect of Froude number on the instability. Thus, we present
results for the case F0 =

√
1/2, 1.3, Q0 = 0.3, Θ0C0 = 0.3, β = 5. Figure 14(a) shows

that when the results are plotted in the (βl, Ωl)-plane, the upstream Froude number
has very little effect on the results. However, figure 14(b) shows that the effect is more
noticeable if we plot results in the (X, Ωl)-plane. Here we see that instability begins
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Figure 14. The effect of the upstream F0 on the neutral curves for Φ0 = C0Θ0 = 0.3, β = 5.

earlier at higher Froude numbers and that the higher modes are therefore more likely
to be experimentally accessible in that regime.

Now we present the results from the leading-order stability theory for the channel
defined by (2.29). In these calculations, we have taken A= 0.5, 1, 1.5, 2 and the other
constants are given by

F0 = 0.75, Q0 = 0.3, Θ0C0 = 0.3, β = 5.

Figure 15 shows the first mode neutral curves for these cases. Not surprisingly,
figure 15(a) shows that the flow first becomes unstable to the largest-amplitude
expansion. Note here that each calculation gives two curves corresponding to the onset
of instability as the channel expands and its stabilization as the channel contracts
further downstream. However, figure 15(b) shows the remarkable result that, if the
results are plotted in the (βL, ΩL)-plane, the results corresponding to the onset and
cessation of instability at all amplitudes become graphically indistinguishable if we
work with the aspect ratio as the control parameter. Indeed, we have in figure 15(b)
also plotted the neutral curves for the linearly diverging channel at the same values
of the flow parameters and we see that in the aspect ratio–frequency plane the results
are indistinguishable from the present case. Now let us see how the above conclusions
are modified if we allow for the O(ε) correction to the growth rates. The parameter
values used above are typical of those to be found in the field, now we turn our
attention in detail to the experimental results of FP.
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We recall that the first eight experiments reported by FP corresponded to the
linearly divergent channel defined by

y = ±1, X < 0, y = ±(1 + X), 0.0 < X < 2.

The eight runs with which we can compare our theory typically correspond to
values of Q0 lower than those to be found in the field. In fact, this parameter can
be absorbed directly into the frequency so we can in effect scale out its effect on the
stability problem. For that reason, we will now plot neutral curves using ΩL/Q0 rather
than ΩL. Figures 16 and 17 show the neutral curves for the first three modes for the
experimental configuration of FP. Figure 16 shows the results in the frequency–Xn

plane whilst figure 17 uses the local aspect ratio as a control parameter. Figure 16
shows results qualitatively similar to those found above, although the results for
experiments 4 and 6 deserve some comment. The upstream aspect ratios for these
cases were 10 and 7, respectively. FP state that all upstream values of the aspect ratio
were in the stable regime, but figure 16(d) clearly shows instability occurring at the
entrance to the divergent reach. The effect is also present in figure 16(f ) where we
see instability occurring very soon after the wave enters the channel.

Figure 17 again demonstrates the early onset of instability in two of the experiments.
A fixed-frequency wave moves along well-defined paths in these figures. Figure 17(i)
shows such paths for experiment (1) of FP. We observe that a wave which is unstable
to the first mode rapidly becomes stable to that mode and unstable to the second as it
moves downstream. This is crucial because we believe this is the reason why divergent
channels are able to sustain central bar modes initially associated with forcing caused
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by the channel divergence (i.e. the second mode) rather than alternating bars. In order
to see why this is the case, we now discuss the results presented in figures 18 and 19.
Figure 18 shows the growth rates for five different frequency modes (first and second)
as they move downstream in the configuration of experiment (1). We see that the first
modes amplify first, but then become overtaken by second modes before eventually
becoming stable. Note that the second mode growth rates are higher than those
of the first. The upshot of the last observation is that if, as shown in figure 19, we
compute the integrated growth of a mode from the point where it becomes unstable by
writing

J = −
∫ X

Xn

αi(s) ds,

then the second modes undergo significantly more amplification than the corres-
ponding first modes as they move downstream. Moreover, since the incoming flow
has a steady central bar, a receptivity calculation of the type given by Hall (2004) will
predict that the central bar will be preferentially excited. (We will return to this point
later when we draw some conclusions.) Indeed, since the amplification of a disturbance
is in fact eJ/ε , then in a divergent channel with small background disturbances
requiring significant amplification before a finite-amplitude state is achieved, it is
much more likely that it will be second modes which achieve the required amplitude.
We believe that this is the reason for the experimentally observed preference for
central bars found by FP.
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The results presented so far have been restricted to predictions based on the
leading-order approximation to the neutral point. Now we present results which
indicate the effect of the order ε correction term associated with the growth rate
defined on sediment depth. We recall that figure 17 corresponded to the leading-order
predictions of the neutral locations for the eight experimental investigations of FP.
Figure 20 shows the first mode neutral curves for experiment 1 from FP when the next
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order correction term is taken into account. The neutral curves shown correspond to
ε =0.0, 0.01, 0.04. We observe that, in all cases, flow divergence has a destabilizing
effect on the flow stability with the unstable regime of the different modes increased
in size. In fact, even at these quite small values of the slope, there is a large effect and
the theory is probably not valid even at the smallest value of the slope used in the FP
experiments. We see that when ε = 0.04 the flow is destabilized at the very beginning
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of the divergent reach of the flow. Thus, at sufficiently high values of the slope, the
neutral curve become discontinuous. However, it is likely that the range of validity of
the theory does not extend to the higher values of the slope used since the changes in
the positions of the neutral curves are O(1). Figure 21 gives the corresponding second
mode results for the first experiment of FP. We again note the destabilizing effect of
flow divergence though the effects are somewhat less than was the case for the first
mode. We note once again that, at sufficiently high slopes, the flow is immediately
unstable. It is also noticeable that the range of unstable wavenumbers for the second
mode is increased significantly more than is the case for the first mode. Calculations
for the other experimental configurations of FP produce essentially the same effects
seen in figures 20 and 21.

In summary, we conclude that the asymptotic theory we have developed agrees
very well with FP, but the slowly varying description of the instability problem is
probably not valid at the wall slopes used by FP. Our results show that a 1% wall
slope produces a change in the neutral curve of size 10%, so even at the smallest
experimentally used slope, 0.26, we are predicting changes in neutral values of the
width comparable with its parallel value. Nevertheless the small slope theory indicates
the effect likely to be observed at the experimentally used values. Thus, we expect the
first two modes to be significantly destabilized and the unstable band of frequencies to
be increased significantly for the second mode. The path of a constant-frequency wave
as it moves downstream is the same whether or not we use the O(ε) correction term
to define the growth rate. Thus, our conclusion that the flow divergence effectively
means that waves move rapidly into the region dominated by the second mode
becomes unchanged. Indeed, the widening of the unstable second-mode frequency
band accentuates that effect.

5. Conclusions
(i) In a slowly diverging channel, a steady central bar with slope in the

spanwise direction of size ε2 is forced. This slope at any spanwise location increases
monotonically from zero at the beginning of the divergent region.
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(ii) In a diverging channel, linear instability suggests that second-mode distur-
bances are likely to be more amplified than alternating bars as they move downstream.
At high enough values of the local width ratio each of the modes can be stationary
and again the steady central mode is likely to be most amplified.

(iii) The central bars found by FP are likely to be associated with the forced steady
central bars. At first sight, it might therefore seem that the instability theory is not
relevant to the FP experiment. However, these central bars will selectively initiate
steady central bars when the flow becomes unstable through the receptivity process
discussed by Hall (2004). In that paper, it was shown that flow oscillations of size A1

upstream of width variations of size A2 produce migrating instability waves of size
A1A2. Stationary modes which are possible at relatively high values of the width ratio
are of size A2. Thus, in situations where steady central bar modes are unstable they
are preferentially excited in the receptivity process. This is, we believe, the situation in
the FP experiments with the central bars initially forced by flow divergence moving
into a region where they are unstable, at which stage their relative size and growth
rates ensure that they survive throughout the divergent region. This is exactly the
situation in a three-dimensional boundary where stationary crossflow vortices tend
to be generated in preference to travelling vortices because the stationary modes are
generated more efficiently by surface imperfections.

This work was partially carried out whilst the author was a visitor at CESPR and
CSIT, Florida State University. The author wishes to thank the referees for many
useful suggestions on the first draft of this paper and Professor David Furbish for
helpful comments.

Appendix
In order to define the functions J1 − J8 appearing in (3.16) we first define

�1 − �8, N , by

V 0C = �1S + T.O.S., V 0yS = �2S,

V 0S = �3C + T.O.C., V 0yC = �4C,

yC = �5S + T.O.S., yS = �6C + T.O.C.,

D1C = �7C + T.O.S., D1S = �8S + T.O.C.,

N = mπ/(F − G)′/(F − G)2,

where T.O.C. and T.O.S. were defined earlier and �5 = �6 = (−1)m+1(F − G)/(2mπ),
�2 = �4 = −(U 0D0)X/D0, �1 =�3 = �4�5. The quantities J1 − J12 and R1 − R3 may
then be written in the form

J1 = − iαΦ0�1f1v̂0

U 0

− iαΦ0�1

U 0

[
v̂0

U 0

− MR
(
F 2

0 − d̂0

)]
+Φ0X[f1û0 + f2d̂0] + Φ0[f1Xû0 + f2Xd̂0] − Φ

U
2

0

(û0�2 + Mû0�1)

− �3Φ0

U 0

(Mf1û0 + Mf2d̂0) + Φ0(f1û0X + f2d̂0X),

− NΦ0�5(f1û0 + f2d̂0) −
[
idv̂0A + βv̂0U0

[
C0(D0)

D0

]′

+ βv̂0A
C0

D0

]
�,
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J2 = −Φ0(f1û0 + f2d̂0),

J3 = −U 0d̂0 − D0û0,

J5 = −U 0û0X − û0

dU 0

dX
− �1û0M + U 0N�5û0 − βC0v̂0�1

D0

+ N�5

− [i∂(Ad̂ ′
0 + û0) − Mv̂0]�8

J4 = −U 0d̂0X − D0û0X − û0

dD0
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− d̂0

dU 0

dX
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−
[
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{(
C0(D0)

D0

)′

+ 2U0A
C

1

0

C0

+ U 2
0

(
C0(D0)

D0

)′}

+2
βC0

D0
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J6 = −1 − U 0û0,

J7 = −U 0v̂0X +Mv̂0�3 − v̂0�4 − β
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J8 = −U 0v̂0, J9 =

J3

D0

− J6, J10 =
J4

D0

− J5,11,

J11 =

(
f1 − 1

U 0

)
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R
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,

R1 = J9ĥ
′
0 + J10ĥ0, R2 = J8ĥ

′
0 + J7ĥ0, R3 = J12ĥ

′
0 + J11ĥ0.

The quantities e0, e1, e2, etc. are defined by

e0 = iαU 0 +
βC0s1

D0

, e2 = − iα

e0

, e2 =
−βC0s2/D0 +

(
β/D

2

0

)
C0U

2

0
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,

e3 = e1 + e2F
2
0 , e4 =

iαU 0

D0

+ iαe2, e5 = −iαe3 − iαU 0F
2
0

D0
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(
− iΩ
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U 0

− iα[f1e2 + f2]

)/
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U 0

+ iα
[
f1e3 + f2F

2
0

])
R,

e8 = −
(

iαU 0 +
βC0U 0

D0

)
.

Finally, the quantity µ is defined by

µ =
2(F ′ − G′)û0/(F − G) − J9 − x̂2J7 − x̂4J11

J10 + x̂2J8 + x̂4J12

.
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